Maskinarkitektur og operativsystemer NOTER

3.

Den lagdelte maskine

Indhold:

3.1 Den lagdelte virtuelle maskine
a) Uddrag: Structured computer orgaization, Tanenbaum
b) Diagrammer: Den virtuel maskine under DOS

notesaml/ Bjerk Busch TietgenSkolen ~ EDB-Skolen

V.1.1 3/8/1995

Maskinarkitektur og operativsystemer NOTER 3.1.a1

3.1.a

Structured computer organization,
Second edition,

Prentice Hall

Andrew S. Tannenbaum

1984

Uddrag af kapitel 1.

A digital computer is a machine that can solve problems for people by carrying
out instructions given to it. A sequence of instructions describing how to perform a
certain task is called a program. The electronic circuits of each computer can recog-
nize and directly execute a limited set of simple instructions into which all its pro-
grams must be converted before they can be executed. These basic instructions are
rarely much more complicated than:

Add 2 numbers.
Check a number to see if it is zero.

Move a piece of data from one part of the computer’s memory to another.

Together, a computer’s primitive instructions form a language in which it is possi-
ble for people to communicate with the computer. Such a language is called a
machine language.

The people designing a new computer must decide what instructions to include in
its machine language. Usually they try to make the primitive instructions as simple as
possible, consistent with the computer’s intended use and performance requirements,
in order to reduce the complexity and cost of the electronics needed. Because most
machine languages are so simple, it is difficult and tedious for people to use them.

This problem can be attacked in two principal ways: both involve designing a new
set of instructions that is more convenient for people to use than the set of built-in

notediv/ Bjork Busch TietgenSkolen EDB-Skolen V.10 27/1/1995

Maskinarkitektur og operativsystemer NOTER 3.1.2.2

machine instructions. Taken together, these new instructions also form a language,
which we will call L2, just as the built-in machine instructions form a language,
which we will call L1. The two approaches differ in the way programs written in L2
are executed by the computer, which, after all, can only execute programs written in
its machine language, L1.

One method of executing a program written in L2 is first to replace each instruc-
tion in it by an equivalent sequence of instructions in L1. The resulting program con-
sists entirely of L1 instructions. The computer then executes the new L1 program
instead of the old L2 program. This technique is called translation.

The other technique is to write a program in L1 that takes programs in L2 as
input data and carries them out by examining each instruction in turn and executing
the equivalent sequence of L1 instructions directly. This technique does not require
first generating a new program in L1. It is called interpretation and the program that
carries it out is called an interpreter.

Translation and interpretation are similar. In both methods instructions in L2 are
ultimately carried out by executing equivalent sequences of instructions in L1. The
difference is that, in translation, the entire L2 program is first converted to an L1 pro-
gram, the L2 program is thrown away, and then the new L1 program is executed. In
interpretation, after each L2 instruction is examined and decoded, it is carried out
immediately. No translated program is generated. Both methods are widely used.

Rather than thinking in terms of translation or interpretation, it is often more con-
venient to imagine the existence of a hypothetical computer or virtual machine whose
machine language is L2. If such a machine could be constructed cheaply enough,
there would be no need for having L1 or a machine that executed programs in L1 at
all. People could simply write their programs in L2 and have the computer execute
them directly. Even though the virtual machine whose language is L2 is too expen-
sive to construct out of electronic circuits, people can still write programs for it.
These programs can either be interpreted or translated by a program written in L1 that
itself can be directly executed by the existing computer. In other words, people can
write programs for virtual machines, just as though they really existed.

To make translation or interpretation practical, the languages L.1 and L2 must not
be “too” different. This constraint often means that L2, although better than L1, will
still be far from ideal for most applications. That L2 should be far from ideal is
perhaps discouraging in light of the original purpose for creating it—namely, to
relieve the programmer of the burden of having to express algorithms in a language
more suited to machines than people. However, the situation is far from hopeless.

The obvious approach is to invent still another set of instructions that is more
people-oriented and less machine-oriented than those of L2. This third set also forms
a language, which we will call L3. People can write programs in L3 just as though a
virtual machine with L3 as its machine language really existed. Such programs can
either be translated to L2 or executed by an interpreter written in L2.

The invention of a whole series of languages, each one more convenient than its
predecessors, can go on indefinitely until a suvitable one is finally achieved. Each
language uses its predecessor as a basis, so we may view a computer using this

notediv/ Bjerk Busch TietgenSkolen ~EDB-Skolen V.10 27/1/1995

Maskinarkitektur og operativsystemer

NOTER

3.1.a.3

technique as a series of layers or levels, one on top of another, as shown in Fig. 1-1.

The bottom-most language or level is the simplest and the highest language or level is
the most sophisticated.

Level n

Level 4

Level 3

Level 2

Level 1

Virtual machine Mn, with
machine language Ln

—~—Programs in Ln are
either interpreted by
an interpreter running

on a Tower machine, or
are translated to the

machine language of a

lower machine

Virtual machine M4, with
machine language L4

Virtual machine M3, with
machine language L3

——Programs in L3 are
either interpreted by
interpreters running on

Virtual machine M2, with
machine language L2

Actual computer M1, with
machine language L1

M2 or M1, or are translated

to L2 or L1

——Programs in L2 are
either interpreted by an
interpreter running on
M1, or are translated to
L1

~—Programs in L1 can be
directly executed by
the electronic circuits

Fig. 1-1. A multilevel machine.

1.1. LANGUAGES, LEVELS, AND VIRTUAL MACHINES

There is an important relation between a language and a virtual machine. Each
machine has some machine language, consisting of all the instructions that the

notediv/ Bjerk Busch

TietgenSkolen

EDB-Skolen

V.1.0 27/1/1995

Maskinarkitektur og operativsystemer NOTER 3.1.a.4

machine can execute. In effect, a machine defines a language. Similarly, a language
defines a machine—namely, the machine that can execute all programs written in the
language. Of course, the machine defined by a certain language may be enormously
complicated and expensive to construct directly out of electronic circuits but we can
imagine it nevertheless. A machine with Ada*, Pascal, or COBOL as its machine
language would be a complex beast indeed but it is certainly conceivable, and perhaps
in a few years such a machine will be considered trivial to build.

A computer with n levels can be regarded as n different virtual machines, each
with a different machine language. We will use the terms “level” and “virtual
machine” interchangeably. Only programs written in language L1 can be directly car-
ried out by the electronic circuits, without the need for intervening translation or
interpretation. Programs written in L2, L3, ..., Ln must either be interpreted by an
interpreter running on a lower level or translated to another language corresponding to
a lower level.

A person whose job it is to write programs for the level n virtual machine need
not be aware of the underlying interpreters and translators. The machine structure
ensures that these programs will somehow be executed. It is of little interest whether
they are carried out step by step by an interpreter which, in tumn, is also carried out by
another interpreter, or whether they are carried out directly by the electronics. The
same result appears in both cases: the programs are executed.

Most programmers using an 7 -level machine are only interested in the top level,
the one least resembling the machine language at the very bottom. However, people
interested in understanding how a computer really works must study all the levels.
People interested in designing new computers or designing new levels (i.e., new vir-
tual machines) must also be familiar with levels other than the top one. The concepts
and techniques of constructing machines as a series. of levels and the details of some
important levels themselves form the main subject of this book. The title Structured
Computer Organization comes from the fact that viewing a computer as a hierarchy
of levels provides a good structure or framework for understanding how computers are
organized. Furthermore, designing a computer system as a series of levels helps to
ensure that the resulting product will be well structured.

1.2. CONTEMPORARY MULTILEVEL MACHINES

Most modern computers consist of two or more levels. Six-level machines are
not at all unusual, as shown in Fig. 1-2. Level 0, at the bottom, is the machine’s true
hardware. Its circuits carry out the machine language programs of level 1. For the
sake of completeness, we should mention the existence of yet another level below our
level 0. This level, not shown in Fig. 1-2, because it falls within the realm of electri-
cal engineering (and is thus outside the scope of this book) is called the device level.
At this level, the designer sees individual transistors, which are the lowest-level

*Ada is a trademark of the U.S. Department of Defense.

notediv/ Bjerk Busch TietgenSkolen ~EDB-Skolen V.10 27/1/1995

Maskinarkitektur og operativsystemer NOTER 3.1.a5

primitives for computer designers. (Of course, one can also ask how transistors work
inside but that gets into solid-state physics.)

Problem-oriented language

Level 5 level

Translation (compiier)

Level 4 Assembly language level

Translation (assembler)

Level 3 Operating system machine
level

Partial interpretation (operating system)

Level 2 Conventional machine level

Interpretation (microprogram)

Level 1 Microprogramming level

Microprograms are directly
executed by the hardware

Level O Digital logic level

Fig. 1-2. Six levels present on most modern computers. The method by
which each level is supported is indicated below it, along with the name of
the supporting program in parentheses.

At the lowest level that we will study, the digital logic level, the interesting
objects are called gates. These gates are digital, unlike transistors, which are analog.
Each gate has one or more digital inputs (signals representing 0 or 1) and computes as
output some simple function of these inputs, such as AND or OR. Each gate is built up

notediv/ Bjark Busch TietgenSkolen EDB-Skolen V.1.0 27/1/1995

Maskinarkitektur og operativsystemer NOTER 3.1.2.6

of at most a handful of transistors. We will examine the digital logic level in detail in
Chap. 3. Although knowledge of the device level is something of a specialty, with
the advent of microprocessors and microcomputers, more and more people are coming
in contact with the digital logic level. For this reason we have included the latter in
our model and devoted an entire chapter of the book to it.

The next level up is level 1, which is the true machine language level. In con-
trast to level O, where there is no concept of a program as a sequence of instructions
to be carried out, in level 1 there is definitely a program, called a microprogram,
whose job it is to interpret the instructions of level 2. We will call level 1 the
microprogramming level. Although it is true that no two computers have identical
microprogramming levels, enough similarities exist to allow us to abstract out the
essential features of the level and discuss it as though it were well defined. For exam-
ple, few machines have more than 20 instructions at this level and most of these
instructions involve moving data from one part of the machine to another, or making
some simple tests.

Each level 1 machine has one or more microprograms that can run on it. Each
microprogram implicitly defines a level 2 language (and a virtual machine, whose
machine language is that language). These level 2 machines also have much in com-
mon. Even level 2 machines from different manufacturers have more similarities than
differences. In this book we will call this level the conventional machine level, for
lack of a generally agreed-upon name.

Every computer manufacturer publishes a manual for each of the computers it
sells, entitled “Machine Language Reference Manual” or “Principles of Operation of
the Western Wombat Model 100X Computer” or something similar. These manuals
are really about the level 2 virtual machine, not the level 1 actual machine. When
they describe the machine’s instruction set, they are in fact describing the instructions
carried out interpretively by the microprogram, not the hardware instructions them-
selves. If a computer manufacturer provided two interpreters for one of its machines,
interpreting two different level 2 machine languages, it would need to provide two
“machine language” reference manuals, one for each interpreter.

It should be mentioned that some computers, particularly older ones, do not have
a microprogramming level. On these machines the conventional machine level
instructions are carried out directly by the electronic circuits (level 0), without any
level 1 intervening interpreter. As a result, level 1 and not level 2 is the conventional
machine level. Nevertheless, we will continue to call the conventional machine level
“level 2,” despite these exceptions.

The third level is usually a hybrid level. Most of the instructions in its language
are also in the level 2 language. (There is no reason why an instruction appearing at
one level cannot be present at other levels as well.) In addition, there is a set of new
instructions, a different memory organization, the ability to run two or more programs
in parallel, and various other features. More variation exists between level 3
machines than between either level 1 machines or level 2 machines.

The new facilities added at level 3 are carried out by an interpreter running at
level 2, which, historically, has been called an operating system. Those level 3

notediv/ Bjerk Busch TietgenSkolen =~ EDB-Skolen V.10 27/1/1995

Maskinarkitektur og operativsystemer NOTER 3.1.a.7

instructions identical to level 2's are carried out directly by the microprogram, not by
the operating system. In other words, some of the level 3 instructions are interpreted
by the operating system and some of the level 3 instructions are interpreted directly by
the microprogram. This is what we mean by “hybrid.” We will call this level the
operating system machine level.

There is a fundamental break between levels 3 and 4. The lowest three levels are
not designed for direct use by the average garden-variety programmer. They are
intended primarily for running the interpreters and translators needed to support the
higher levels. These interpreters and translators are written by people called systems
programmers who specialize in designing and implementing new virtual machines.
Levels 4 and above are intended for the applications programmer with a problem to
solve.

Another change occurring at level 4 is the method by which the higher levels are
supported. Levels 2 and 3 are always interpreted. Levels 4, 5, and above are usu-
ally, although not always, supported by translation.

Yet another difference between levels 1, 2, and 3, on the one hand, and levels 4,
5, and higher, on the other, is the nature of the language provided. The machine
languages of levels 1, 2, and 3 are numeric. Programs in them consist of long series
of numbers, which are fine for machines but bad for people. Starting at level 4, the
languages contain words and abbreviations meaningful to people.

Level 4, the assembly language level, is really a symbolic form for one of the
underlying languages. This level provides a method for people to write programs for
levels 1, 2, and 3 in a form that is not as unpleasant as the virtual machine languages
themselves. Programs in assembly language are first translated to level 1,2,0r3
language and then interpreted by the appropriate virtual or actual machine. The pro-
gram that performs the translation is called an assembler. Assembly language once
was important but it is becoming less important as time goes on.

Level 5 consists of languages designed to be used by applications programmers
with problems to solve. Such languages are called by many names, including high-
level languages and problem-oriented languages. Literally hundreds of different
ones exist. A few of the better known ones are Ada, ALGOL 68, APL, BASIC, C,
COBOL, FORTRAN, LISP, Pascal, and PL/1. Programs written in these languages
are generally translated to level 3 or level 4 by translators known as compilers,
although occasionally they are interpreted instead.

Levels 6 and above consist of collections of programs designed to create machines
specifically tailored to certain applications. They contain large amounts of informa-
tion about that application. It is possible to imagine virtual machines intended for
applications in administration, education, computer design, and so on. These levels
are an area of current research.

In summary, the key thing to remember is that computers are designed as a series
of levels, each one built on its predecessor. Each level represents a distinct abstrac-
tion, with different objects and operations present. By designing and analyzing com-
puters in this fashion, we are temporarily able to suppress irrelevant details and thus re-
duce a complex subject to something easier to understand.

notediv/ Bjerk Busch TietgenSkolen EDB-Skolen V.1.0 27/1/1995

Maskinarkitektur og operativsystemer NOTER

3.1.b

The virtual machine hierarchy.

Command Applications —
processor User interface
DOS
Software
BIOS 3 ROM

SN Y T .
IARRRE! Firmware

Physical
hardware

TR CPU
”TT U | Hardware

System layering.

User interface (Windows, menus, etc.)

Device Applications programs
independence

Command processor

\\ DOS ﬁ-} Directories
and files
Devices 47A BIOS

Hardware

Bits, bytes, and registers

Electrical
circuits

notediv/ Bjerk Busch TietgenSkolen ~EDB-Skolen V.10 27/1/1995

