GenericsExercise01		page 2 of 2

GenericsExercise01

In this exercise you should learn about using generic to make an abstract data structure which is type strong. You will make your own simple list class for general purpose.
The generic class should be named MyList and must contain:
Private fields:
· a generic array named myArray
· a number count that hold the number of element in use (and is one more than the last index in use)
· Example on content of myArray with 6 elements in use (count == 6)
	index
	0
	1
	2
	3
	4
	5
	6
	7

	value
	Bjørk
	Tove
	Lene
	Simon
	Hans
	Allan
	?
	?

Elements will always be by index between 0 and count-1
 Public constructors:
· default constructor:
postcondition:
- myArray contains an array with space for 100 elements of the generic type
- count is zero

· constructor with a number size as argument
precondition: size > 0
postcontition:
- myArray contains an array with space for a number of elements of the generic type given by size
- count is zero
Public property:
· Count: only public get witch return the number of elements in use
postcondition: nothing changed in the class
Public methods:
· Add: takes one generic element (elm) as input parameter
precondition: elm != null and there is at least space for one more element (count < size of myArray)
postcondition: elm is inserted after the element with highest index and count is adjusted by +1, nothing else is changed in the class

· GetElementByIndex: take a number (idx) as parameter an returns the generic element at the index given by idx
precondition: there is at least one element (0 < count), and idx is a legal place (0 <= idx < count)
postcondition: element (reference) is returned but nothing changed in the class

GetLastElement: returns the generic element (reference) at the last index in use
precondition: there is at least one element (0 < count)
postcondition: last element (reference) is returned but nothing changed in the class

GetFirstElement: returns the generic element (reference) at the first index in use (0)
precondition: there is at least one element (0 < count)
postcondition: first element (reference) is returned but nothing changed in the class

· RemoveLastElement: remove the element with highest index (returns nothing)
precondition: there is at least one element (0 < count)
postcondition: count is adjusted by -1

· RemoveFirstElement: remove the element with lowest index (returns nothing)
precondition: there is at least one element (0 < count)
postcondition: all elements from index 1 is moved to a place one index lower and count is adjusted by -1

· InsertElementAt: takes an index (idx) and a generic element (elm) as parameter, inserts the element at the index
precondition: elm != null, there is at least space for one more element (count < size of myArray), idx is a legal place (0 <= idx < count)
postcondition: count is adjusted by +1, myArray contains all old elements from before and also the new one in the following order: all elements with an old index < idx are still at same index, new element (elm) is at index idx, all elements with an old index >= idx are moved to a place one index higher.

[bookmark: _GoBack]More advanced (if time):
· Implement an Indexer: that can be used for replace and retrieving an element using the syntax like for an array and a list.
Example: Student s = studentList[4]; studentList [5] = new Student(………);
The indexer should take a number idx as parameter.
precondition: idx is a legal element index (0 <= idx < count)
- used on the left side in an assignment: right hand side must not be null
postcondition:
- used on the right side in an assignment: element at idx (reference) is returned but nothing changed in the class.
- used on the left side in an assignment: element at idx (reference) is replaced by the right hand side element, but nothing else is changed in the class.

· Implement an Iterator: that can be used for iterate through a MyList object by using a foreach loop.

