80 Programming Language Processors in Java

4.2.3 Grammar transformations

EBNF is a much more flexible notation than BNF. In particular, grouping of alternatives
‘(...]-..]...) and iteration ‘*’ make it easy to perform useful transformations on a
grammar expressed in EBNF. Here we introduce and illustrate some possible transfor-
mations. Later, in Section 4.3.4, we shall see how they are used in practice.

Left factorization
Suppose that we have alternatives of the form:
XY|XZ

where X, Y, and Z are arbitrary (extended) REs. We can replace these alternatives by the
equivalent extended RE:

X(¥|2

The REs X Y| X Z and X (Y | Z) are equivalent in the sense that they generate exactly
the same languages. This fact was illustrated by the first two REs in Example 4.3.

Example 4.5 Left factorization

Many programming languages have alternative forms of if-command:

single-Command := V-name := Expression
| if Expression then single-Command
| if Expression then single-Command
else single-Command

This production rule can be left-factorized as follows:

single-Command := V-name := Expression
| if Expression then single-Command
(¢ | e1se single-Command)

O

Right factorization is the mirror-image of left factorization, but is less useful in
practice.

Elimination of left recursion
Suppose that we have a production rule of the form:
N:=X|NY

where N is a nonterminal symbol, and X and Y are arbitrary extended REs. This produc-
tion rule is left-recursive. We can replace it by the equivalent EBNF production rule:

N = X ()*

Syntactic Analysis 81

These production rules are equivalent in the sense that they generate exactly the
same languages. The production rule N ::= X | N Y states that an N-phrase may consist
either of an X-phrase or of an N-phrase followed by a Y-phrase. This is just a roundabout
way of stating that.an N-phrase consists of an X-phrase followed by any number of Y-
phrases. The production rule N ::= X (Y)* states the same thing more concisely.

Example 4.6 Elimination of left recursion

The syntax of Triangle identifiers is expressed in BNF as follows:

Identifier = Letter
| Identifier Letter
| Identifier Digit

This production rule is a little more complicated than the form shown above, but we can
left-factorize it:

Identifier x= Letter
| Identifier (Letter | Digit)

and now eliminate the left recursion:

Identifier u= Letter (Letter | Digit)*

O

As illustrated by Example 4.6, it is possible for a more complicated production rule
to be left-recursive:

N = Xj | IXmlNYI | |NYn
However, left factorization gives us:

No= X)X | Nl | Y
and now we can apply our elimination rule:

N o= X | X)) (Y] | Y™

Substitution of nonterminal symbols

Given an EBNF production rule N ::= X, we may substitute X for any occurrence of N
on the right-hand side of another production rule.

If we substitute X for every occurrence of N, then we may eliminate the nonterminal
N and the production rule N ::= X altogether. (This is possible, however, only if N ::=X
is nonrecursive and is the only production rule for N.)

Whether we actually choose to make such substitutions is a matter of convenience. If
N occurs in only a few places, and if X is uncomplicated, then elimination of N ::=X
might well simplify the grammar as a whole.

82 Programming Language Processors in Java

Example 4.7 Substitution

Consider the following production rules, taken from a BNF grammar of Pascal:

single-Command ::= £or Control-Variable : = Expression To-or-Downto
Expression do single-Command

Control-Variable = |dentifier
To-or-Downto = to
| downto

It makes sense to eliminate Control-Variable and To-or-Downto by substitution:

single-Command ::= £or Identifier := Expression (to | downto)
Expression do single-Command
I

The nonterminal To-or-Downto was present in the first place only because grouping
of alternatives ‘(...|...)" is not possible in BNF. The nonterminal Control-Variable was
present only to act as a ‘semantic clue’ — to emphasize the role this particular identifier
plays in the for-command — and not for any grammatical reason. Eliminating such
nonterminals simplifies the grammar.

O

4.2.4 Starter sets

The starter set of an RE X, written starters[X], is the set of terminal symbols that can
start a string generated by X. For example:

startersfhis|her|its] = {h,i}
starters[(r e)* s e t] {r,s}

since ‘(r e)* s e t’ generates the set of strings {set, reset, rereset, ...}.

The following is a precise and complete definition of starters:

starters[€]l ={}
starters[[t] = {¢} where ¢ is a terminal symbol
starters[X Y] = starters[X] U starters[Y]] if X generates €

starters[X Y]
starters[X | Y]

starters[X] if X does not generate €

starters[X] © starters[Y]]

starters[X*] starters[X]|

(where X and Y stand for arbitrary REs).

Syntactic Analysis 83

We can easily generalize this to define the starter set of an extended RE. There is
only one case to add:

starters[N] = starters[X] where N is a nonterminal
symbol defined by
production rule N ::= X
In Example 4.4:
starters[Expression] = starters[[primary-Expression

(Operator primary-Expression)*]|
= starters[[primary-Expression]
starters[[Identifier] W starters[[(Expression)]
starters[a | b | e | d | eJu {(}
= {a,b,c,d, e, (}

4.3 Parsing

In this section we are concerned with analyzing sentences in some grammar. Given an
input string of terminal symbols, our task is to determine whether the input string is a
sentence of the grammar, and if so to discover its phrase structure. The following
definitions capture the essence of this.

With respect to a particular context-free grammar G:

* Recognition of an input string is deciding whether or not the input string is a sentence
of G.

* Parsing of an input string is recognition of the input string plus determination of its
phrase structure. The phrase structure can be represented by a syntax tree, or other-
wise.

We assume that G is unambiguous, i.e., that every sentence of G has exactly one
syntax tree. The possibility of an input string having several syntax trees is a compli-
cation we prefer to avoid.

Parsing is a task that humans perform extremely well. As we read a document, or
listen to a speaker, we are continuously parsing the sentences to determine their phrase
structure (and then determine their meaning). Parsing is subconscious most of the time,
but occasionally it surfaces in our consciousness: when we notice a grammatical error,
or realize that a sentence is ambiguous. Young children can be taught consciously to
parse simple sentences on paper.

In this section we are interested in parsing algorithms, which we can use in syntactic
analysis. Many parsing algorithms have been developed, but there are only two basic
parsing strategies: bottom-up parsing and top-down parsing. These strategies are
characterized by the order in which the input string’s syntax tree is reconstructed. (In

