174

i

CHAPTER 8 TASKS

called Tasks. When an application requires information from the phon_e, such as the phone number
of a contact or a photo from the camera, it needs to launch an appropriate Task.

Windows Phone Tasks are all structured essentially the same way. Howe.ver, they Ca]? b§ pla;edk

into two groups referred to as launchers and chooser.s. As you can imagine, a launcher is a Tas

that launches another application on the phone. It might be to send an ,e—mall, send z; text me;sage,
or display a web page within the browser. Essentially, a launc'her doesn’t return a}rlly tita t;)e;c nia -
application. In fact, when an application triggers a launcher, it should be awarf that the u ectyto
return to the application. A chooser, on the other hand, is a Task that the app 1cat1c;ln can exp1 '
return with a piece of information — for example, requesting that t.he user take a p otS1 or selec ;
phone number. Table 8-1 lists all the Windows Phone Tasks, including the type of any data returned.

TABLE 8-1: Windows Phone Tasks

CHOOSERS DESCRIPTION RETURN TYPE

CameraCaptureTask Opens camera application to take a photo. PhotoResult

PhotoChooserTask Selects an image from your Picture PhotoResult
Gallery.

FmailAddressChooserTask Selects an e-mail address from your EmailResult

Contacts List.

Selects a phone number from your PhoneNumberResult

Contacts List.

PhoneNumberChooserTask

Saves an e-mail address to an existing or
new contact.

SaveEmailAddressTask

Saves a phone number to an existing or
new contact.

gavePhoneNumberTask

LAUNCHERS DESCRIPTION

EmailComposeTask Composes a new e-mail.

PhoneCallTask Initiates a phone call to a specified number.
SmsComposeTask Composes a new text message.

SearchTask Launches Bing Search with a specified search term.
WebBrowserTask Launches Internet Explorer browsing to a specific URL.

MarketplaceDetailTask Launches Marketplace with the details of a specific application.

Launches Marketplace at one of the three hubs: Applications,
Music or Podcasts.

MarketplaceHubTask

MarketplaceReviewTask Launches Marketplace to provide a review of the current application.

MarketplaceSearchTask Launches Marketplace and performs a search for content.

MediaPlayerLauncher Launches Media Player.

Windows Phone Tasks |

The general pattern for invoking a Task is to create an instance of the Task, set any necessary

properties, and then call its Show method. For example, you can invoke the Task to request the user
to select an e-mail address using the following two lines:

EmailAddressChooserTask addressTask = new EmailAddressChooserTask () ;
this.addressTask.Completed += addressTask_Completed;
addressTask. Show () ;

void addressTask_Completed(object sender, EmailResult e){...}

In the case of choosers, you will also need to attach an event handler to the completed event.
When the chooser application closes, the completed event is invoked, and any return value can be
accessed from the event arguments. As mentioned earlier, there is no information returned from a
launcher so there is no method to indicate that the launcher has completed.

Where Did My Application Go?

Before going through each of the different Tasks it’s important to understand how Windows Phone
applications behave when they are placed into the background. This was covered in Chapter 6 in
the context of the navigation system but is equally applicable when working with Tasks. If you
recall, when your application goes into the background, the Deactivated event is raised and then
the application is marked as “Eligible for Termination.” At this point it is highly likely that your

application will be terminated. This is true even if your application invokes a chooser task that is to
return data.

The following code creates an instance of the EmailAddressChooserTask within the
EmailAddressButton_Click method. When this method is invoked, the EmailAddressChooserTask
will be create, the event handler wired up, and the appropriate chooser displayed. The last part of

this process takes the focus away from the application, putting it into the background and making it
“Eligible for Termination.”

private void EmailAddressButton_Click(object sender, RoutedEventArgs e) {
EmailAddressChooserTask addressTask = new EmailAddressChooserTask() ;
addressTask.Completed += addressTask_Completed;
addressTask. Show () ;

}

So what happens if the application does get terminated when the chooser is displayed? More
importantly, what happens when the user has selected the contact’s e-mail address that they want
returned to the application. As you saw in Chapter 6 the application is restarted and the page that
the application was on is navigated to. This is where you will run into issues with defining the
chooser task inside a method scope (as in the previous code snippet). Because the instance is only
created, and the event handler wired up, within the scope of a method, there is no way for the
system to know to invoke the addressTask_cCompleted method with the results of the chooser task.

The correct way to work with chooser tasks is to create the chooser as an instance level variable. In
the following code the EmailaddressChooserTask is instantiated during the construction of the
MainPage and the event handler for the completed event is wired up at the end of the construr

S -

